* Ces horaires sont donnés à titre indicatif.
I. Topologie et convexité 1.- Espaces métriques. Ensembles ouverts, fermés, voisinages, fonctions continues. 2.- Ensembles compacts dans un espace métrique. Compacts de Rn. 3.- Convexité dans un espace vectoriel. Le cas de l'espace euclidien Rn. Optimisation. 4. Propriétés des fonctions numériques convexes définies sur un intervalle de R. 5.- Les inégalités de convexité: Jensen, Hölder, Cauchy-Schwarz et Minkowski. 6. Espaces de Hilbert. Le théorème du parallélogramme, le théorème de la projection sur un ensemble convexe fermé. 7. Bases hilbertiennes.
II. Théorie de la mesure 1. Rappels sur l'intégrale de Riemann. 2. Tribus, la tribu de Borel. 3. La mesure de Lebesgue (construction admise). 4. Théorème de convergence monotone, théorème de convergence dominée. 5. Comparaison de l'intégrale de Lebesgue avec l'intégrale de Riemann. 6. Mesures produits : théorème de Fubini (admis). 7. Théorème du changement de variables dans Rn. 8. Introduction aux espaces Lp.
Type | Libellé | Nature | Coef. | ||
---|---|---|---|---|---|
CC | Contrôle Continu | CC : Topologie et theorie de la mesure | Contrôle Continu Intégral | 9 |