* Ces horaires sont donnés à titre indicatif.
Combinatoire. Cardinaux des ensembles finis, dénombrabilité, exemples de Z, Q et R.
Arithmétique de Z. Divisibilité, division euclidienne, pgcd, théorème de Bézout, congruences, nombres premiers.
Groupes. Produit fini de groupes, sous-groupe, sous-groupe engendré par une partie, sous-groupes de Z, exemples issus de l’algèbre linéaire et de la géométrie, groupe symétrique. Morphisme de groupes, image, noyau, isomorphisme de groupes. Groupes monogènes et cycliques, exemples de Z et Z/nZ. Ordre d’un élément et propriétés.
Anneaux unitaires. Produit fini d’anneaux, sous-anneau, morphisme et isomorphisme d’anneaux, anneau intègre, anneau euclidien. Corps, sous-corps. Idéaux dans un anneau commutatif, interprétation de la divisibilité en termes d’idéaux, idéaux de Z. L’anneau Z/nZ : inversibles, théorème chinois, indicatrice d’Euler, théorème d’Euler.
Anneaux de polynômes à une indéterminée. Idéaux de K[X] où K est un sous-corps de C, pgcd, relation de Bézout, lemme de Gauss. Irréductibles de R[X] et C[X], décomposition en facteurs irréductibles. Critères d’irréductibilité dans Z[X] et Q[X] : polynômes primitifs dans Z[X], critère d’Eisenstein, réductions modulo p.
Graphes. Sommets, sommets adjacents, arêtes, degré d’un sommet, ordre d’un graphe, chaîne, longueur d’une chaîne, graphe complet, graphe connexe, chaîne eulérienne, matrice adjacente associée à un graphe, recherche du plus court chemin sur un graphe pondéré connexe (algorithme de Dijkstra), coloriage de graphes, exemples d’application.
Type | Libellé | Nature | Coef. |
---|