Université Lyon 1
Université de Lyon
Accueil  >>  Master  >>  Santé publique  >>  Biostatistique, biomathématique, bio-informatique et santé  >>  Modèles linéaires généralisés et modèles de survie
  • Domaine : Masters du domaine SCIENCES, TECHNOLOGIES, SANTE
  • Diplôme : Master
  • Mention : Santé publique
  • Parcours : Biostatistique, biomathématique, bio-informatique et santé
  • Unité d'enseignement : Modèles linéaires généralisés et modèles de survie
Nombre de crédits de l'UE : 3
Code APOGEE : DBH2055M
UE Obligatoire pour ce parcours
UE valable pour le semestre 3 de ce parcours
    Responsabilité de l'UE :
ROY PASCAL
 pascal.royuniv-lyon1.fr
04.78.86.21.84
 delphine.maucort-boulchchu-lyon.fr
FAUVERNIER MATHIEU
 mathieu.fauvernieruniv-lyon1.fr
04.78.86.13.24
 pascal.roychu-lyon.fr
    Type d'enseignement
Nb heures *
Cours Magistraux (CM)
18 h
Travaux Dirigés (TD)
12 h
Travaux Pratiques (TP)
0 h
Total du volume horaire
30 h

* Ces horaires sont donnés à titre indicatif.

    Conditions d'accès à l'UE :

Les étudiants inscrits au M2 B3S ainsi que les étudiants des autres parcours de M2 du MSP ayant choisi cette UE en optionnel.

    Programme - Contenu de l'UE :

Théorie :

Modèle linéaire généralisé :

·  Rappels sur le modèle linéaire. Modèle linéaire généralisé. Application à l’analyse des études cas-témoins. Les spécificités du modèle logistique sont soulignées lors de la prise en compte de variables explicatives catégorielles et continues, en mettant l’accent sur l’estimation de la relation entre le niveau d’exposition et le risque, et sur l’estimation de l’effet conjoint de plusieurs facteurs (analyse de l’interaction). Les propriétés des modèles permettant de décrire précisément la relation niveau d’exposition et risque (modèles additifs généralisés) sont présentées.

 
Modèle de survie :

·  Notions de taux et de risque. Modèles de survie non paramétriques et paramétriques. Comparaison de distributions de survie. Propriétés des tests effectués sur les paramètres et les modèles. Modèles à taux proportionnels : modèle semi-paramétrique de Cox, modèle de survie relative d’Estève. Analyse de l’hypothèse des taux proportionnels. Analyse de la relation entre le niveau d’exposition et le risque, estimation de l’effet conjoint de plusieurs facteurs (étude de l’interaction).

    Compétences acquises :
Méthodologiques :

Compétences acquises : A l’issue du module, l’étudiant devra : Connaître les concepts d’incidence (taux) et de risque - Identifier les plans expérimentaux nécessitant ce type d’analyse - Savoir programmer l’analyse d’une étude cas-témoins - Savoir interpréter les résultats d’une étude pronostique - Pouvoir programmer les plans d’analyse correspondants.



Techniques :

Application : Les étudiants proposeront un plan d’analyse et interpréteront les résultats de l’analyse d’une étude cas-témoins et/ou d’une analyse de la survie.


    Modalités de contrôle des connaissances et Compétences 2020-2021:
TypeLibelléNatureCoef. 
CTContrôle TerminalCT : Mod lin genera-Mod survieEcrit session 1 / Ecrit session 22
CPContrôle PartielCP : Mod lin genera-Mod survieDossier - Mémoire - Rapport1
    Liste des autres Parcours / Spécialité / Filière / Option utilisant cette UE :
Date de la dernière mise-à-jour : 23/06/2021
SELECT * FROM parcours INNER JOIN ue_parcours ON PAR_ID_FK=PAR_ID INNER JOIN mention ON MEN_ID = PAR_MENTION_FK WHERE PAR_ACTIVATE = 0 AND UE_ID_FK='16167' ORDER BY UE_ID_FK ASC, PAR_ID_FK ASC